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Abstract— This paper delves into the application of network flow 

models in the context of football strategy, specifically focusing on 

the optimization of passing efficiency within a team. Leveraging 

principles from discrete mathematics, particularly graph theory, 

the study explores the dynamics of passing networks and their 

impact on overall team performance. By representing player 

interactions as a directed graph, where nodes represent players and 

edges denote passes, we employ network flow algorithms to analyze 

and optimize passing efficiency. The objective is to identify key 

players, strategic passing patterns, and configurations that 

maximize ball circulation and enhance the team's overall 

performance. The findings aim to contribute valuable insights to 

coaches, analysts, and researchers interested in leveraging 

mathematical modeling to improve football strategy and player 

coordination. 
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I.   INTRODUCTION 

In the realm of sports analytics, the application of 

mathematical models has become increasingly pivotal in 

unraveling the intricacies of game dynamics and player 

interactions. Football, as a sport characterized by its fluidity and 

dynamic team play, provides a fertile ground for the exploration 

of innovative analytical approaches. This paper delves into the 

integration of network flow models derived from discrete 

mathematics to scrutinize and optimize passing efficiency in 

football. 

The passing network within a football team is analogous to 

the intricate web of connections in a network, where players 

represent nodes and passes between them serve as directed 

edges. Drawing inspiration from the field of network theory, our 

research aims to unveil the underlying patterns and dynamics of 

passing interactions among players. The central objective is to 

employ network flow algorithms to identify optimal passing 

strategies that maximize ball circulation, ultimately contributing 

to enhanced team performance on the pitch. 

As we navigate through this exploration, the significance of 

network flow models in dissecting the passing intricacies in 

football becomes evident. By treating each player as a vital node 

and passes as essential edges, we embark on a journey to analyze 

how the flow of possession can be strategically optimized. This 

paper not only presents a theoretical framework for the 

application of network flow models but also seeks to provide 

practical insights for coaches, analysts, and football enthusiasts 

interested in leveraging mathematical tools to refine team 

strategies. 

The subsequent sections will delve into the foundational 

principles of network flow models, their adaptation to the 

football context, and the implications of our findings on 

understanding and improving passing efficiency in the beautiful 

game. Through this exploration, we aim to contribute to the 

evolving landscape of sports analytics, where the marriage of 

mathematics and football strategy opens new avenues for 

elevating the performance of teams on the field.  

 

II.  THEORY 

A. Graph 

A graph G is an ordered pair (V (G),E(G)) consisting of a set 

V (G) of vertices and a set E(G), disjoint from V (G), of edges, 

together with an incidence function ψG that associates with each 

edge of G an unordered pair of (not necessarily distinct) vertices 

of G. If e is an edge and u and v are vertices such that ψG(e) = 

{u,v}, then e is said to join u and v, and the vertices u and v are 

called the ends of e. We denote the numbers of vertices and 

edges in G by v(G) and e(G); these two basic parameters are 

called the order and size of G, respectively. Two examples of 

graphs should serve to clarify the definition. For notational 

simplicity, we write uv for the unordered pair {u,v}. 

Example 1.  

 

G = (V (G), E(G)) 

 

where 

 

V (G) = {u, v, w, x, y} 

E(G) = {a, b, c, d, e, f, g, h} 

 

and ψG is defined by 

 

ψG(a) = uv ψG(b) = uu ψG(c) = vw ψG(d) = wx 

ψG(e) = vx ψG(f) = wx ψG(g) = ux ψG(h) = xy 

 

Drawing of Graphs 

Graphs are so named because they can be represented 

graphically, and it is this graphical representation which helps 
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us understand many of their properties. Each vertex is indicated 

by a point, and each edge by a line joining the points 

representing its ends. Diagrams of G and H are shown in Figure 

1.1. (For clarity, vertices are represented by small circles.) 

 

 
Fig. 2.1. Diagrams of the graphs G and H 

Source: [3] 

 

There is no single correct way to draw a graph; the relative 

positions of points representing vertices and the shapes of lines 

representing edges usually have no significance. In Figure 1.1, 

the edges of G are depicted by curves, and those of H by straight-

line segments. A diagram of a graph merely depicts the 

incidence relation holding between its vertices and edges. 

However, we often draw a diagram of a graph and refer to it as 

the graph itself; in the same spirit, we call its points ‘vertices’ 

and its lines ‘edges’.  

Most of the definitions and concepts in graph theory are 

suggested by this graphical representation. The ends of an edge 

are said to be incident with the edge, and vice versa. Two 

vertices which are incident with a common edge are adjacent, as 

are two edges which are incident with a common vertex, and two 

distinct adjacent vertices are neighbours. The set of neighbours 

of a vertex v in a graph G is denoted by NG(v).  

An edge with identical ends is called a loop, and an edge with 

distinct ends a link. Two or more links with the same pair of 

ends are said to be parallel edges. In the graph G of Figure 1.1, 

the edge b is a loop, and all other edges are links; the edges d 

and f are parallel edges. 

 

Path and Cycle 

A path is a simple graph whose vertices can be 

arranged in a linear sequence in such a way that two vertices are 

adjacent if they are consecutive in the sequence, and are 

nonadjacent otherwise. Likewise, a cycle on three or more 

vertices is a simple graph whose vertices can be arranged in a 

cyclic sequence in such a way that two vertices are adjacent if 

they are consecutive in the sequence, and are nonadjacent 

otherwise; a cycle on one vertex consists of a single vertex with 

a loop, and a cycle on two vertices consists of two vertices joined 

by a pair of parallel edges. The length of a path or a cycle is the 

number of its edges. A path or cycle of length k is called a k-

path or k-cycle, respectively; the path or cycle is odd or even 

according to the parity of k. A 3-cycle is often called a triangle, 

a 4-cycle a quadrilateral, a 5-cycle a pentagon, a 6-cycle a 

hexagon, and so on. Figure 1.3 depicts a 3-path and a 5-cycle. 

 
Fig. 2.2. (a) A path of length three, and (b) a cycle of length five. 

Source: [3] 

 

Connected Graph 

Certain types of graphs play prominent roles in graph theory. A 

graph is connected if, for every partition of its vertex set into 

two nonempty sets X and Y , there is an edge with one end in X 

and one end in Y ; otherwise the graph is disconnected. In other 

words, a graph is disconnected if its vertex set can be partitioned 

into two nonempty subsets X and Y so that no edge has one end 

in X and one end in Y . (It is instructive to compare this 

definition with that of a bipartite graph.) Examples of connected 

and disconnected graphs are displayed in Figure 1.4. 

 

 

 
Fig. 2.3. (a) A connected graph, and (b) a disconnected graph 

Source: [3] 

 

Directed Graph 

Although many problems lend themselves to graph-theoretic 

formulation, the concept of a graph is sometimes not quite 

adequate. When dealing with problems of traffic flow, for 

example, it is necessary to know which roads in the network are 

one-way, and in which direction traffic is permitted. What we 

need is a graph in which each link has an assigned orientation, 

namely a directed graph.  

 
Fig. 2.4. (G1) an undirected graph and (G2) a directed graph. 

Source: [2] 

 

Formally, a directed graph D is an ordered pair (V (D), A(D)) 

consisting of a set V := V (D) of vertices and a set A := A(D), 

disjoint from V (D), of arcs, together with an incidence function 

ψD that associates with each arc of D an ordered pair of (not 

necessarily distinct) vertices of D. If a is an arc and ψD(a) = 

(u,v), then a is said to join u to v; we also say that u dominates 
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v. The vertex u is the tail of a, and the vertex v its head; they are 

the two ends of a. Occasionally, the orientation of an arc is 

irrelevant to the discussion. In such instances, we refer to the arc 

as an edge of the directed graph. The number of arcs in D is 

denoted by a(D). The vertices which dominate a vertex v are its 

in-neighbours, those which are dominated by the vertex its out-

neighbours. These sets are denoted by N – D (v) and N + D (v), 

respectively. 

 

B. Flow Network 

A flow network 𝐺 = (𝑉, 𝐸) is a directed graph in which each 

edge (𝑢, 𝑣) ∈ 𝐸 has a nonnegative capacity  c(𝑢, 𝑣) ≥ 0. We 

further require that if E contains an edge (𝑢, 𝑣), then there is no 

edge (𝑣, 𝑢) in the reverse direction. (We shall see shortly how to 

work around this restriction.) If (𝑢, 𝑣) ∉ 𝐸, then for convenience 

we define 𝑐(𝑢, 𝑣) = 0, and we disallow self-loops. We 

distinguish two vertices in a flow network: a source s and a sink 

t. For convenience, we assume that each vertex lies on some path 

from the source to the sink. That is, for each vertex 𝑣 ∈ 𝑉 , the 

flow network contains a path 𝑠 ↝ 𝑣 ↝ 𝑡. The graph is therefore 

connected and, since each vertex other than s has at least one 

entering edge, |𝐸| ≥ |𝑉| − 1. Figure 26.1 shows an example of a 

flow network. We are now ready to define flows more formally. 

Let 𝐺 = (𝑉, 𝐸) be a flow network with a capacity function c. Let 

s be the source of the network, and let t be the sink. A flow in G 

is a real-valued function 𝑓 ∶ 𝑉 × 𝑉 → ℝ R that satisfies the 

following two properties: 

Capacity constraint: For all 𝑢, 𝑣 ∈ 𝑉, we require  

 

0 ≤ 𝑓(𝑢, 𝑣) ≤ 𝑐(𝑢, 𝑣). 

 

Flow conservation: For all 𝑢 ∈ 𝑉 − {𝑠, 𝑡}, we require 

 

∑ 𝑓(𝑣, 𝑢) =

𝑣 ∈ 𝑉

∑ 𝑓(𝑢, 𝑣)

𝑣 ∈ 𝑉

 

 

When (𝑢, 𝑣) ∉ 𝐸, there can be no flow from u to v, and 𝑓(𝑢, 𝑣) =
0. 

 

 
 

 
Fig. 2.5. (a) A flow network 𝐺 = (𝑉, 𝐸) for the Lucky Puck Company’s 

trucking problem. The Vancouver factory is the source s, and the Winnipeg 

warehouse is the sink t. The company ships pucks through intermediate cities, 

but only 𝑐(𝑢, 𝑣) crates per day can go from city u to city . Each edge is labeled 

with its capacity. (b) A flow f  in G with value |𝑓| = 19. Each edge (𝑢, 𝑣) is 

labeled by 𝑓(𝑢, 𝑣)/𝑐(𝑢, 𝑣). The slash notation merely separates the flow and 

capacity; it does not indicate division. 

Source: [1] 

 

We call the nonnegative quantity 𝑓(𝑢, 𝑣) the flow from vertex 

u to vertex v. The value of j of a flow f is defined as 

 

|𝑓| = ∑ 𝑓(𝑠, 𝑣) −

𝑣 ∈ 𝑉

∑ 𝑓(𝑣, 𝑠)

𝑣 ∈ 𝑉

 

 

that is, the total flow out of the source minus the flow into the 

source. (Here, the jj notation denotes flow value, not absolute 

value or cardinality.) Typically, a flow network will not have 

any edges into the source, and the flow into the source, given by 

the summation ∑ 𝑓(𝑣, 𝑠)𝑣 ∈ 𝑉  will be 0. We include it, however, 

because when we introduce residual networks later in this 

chapter, the flow into the source will become significant. In the 

maximum-flow problem, we are given a flow network G with 

source s and sink t, and we wish to find a flow of maximum 

value. Before seeing an example of a network-flow problem, let 

us briefly explore the definition of flow and the two flow 

properties. The capacity constraint simply says that the flow 

from one vertex to another must be nonnegative and must not 

exceed the given capacity. The flow-conservation property says 

that the total flow into a vertex other than the source or sink must 

equal the total flow out of that vertex—informally, “flow in 

equals flow out.” 

 

C. The Ford-Fulkerson Algorithm 

The Ford-Fulkerson algorithm depends on three important 

ideas that transcend the method and are relevant to many flow 

algorithms and problems: residual networks, augmenting paths, 

and cuts. These ideas are essential to the important max-flow 

min-cut theorem, which characterizes the value of a maximum 

flow in terms of cuts of the flow network. We end this section 

by presenting one specific implementation of the Ford-

Fulkerson method and analyzing its running time. The Ford-

Fulkerson method iteratively increases the value of the flow. We 

start with 𝑓(𝑢, 𝑣) = 0 for all 𝑢, 𝑣 ∈ 𝑉, giving an initial flow of 

value 0. At each iteration, we increase the flow value in G by 

finding an “augmenting path” in an associated “residual 

network” Gf . Once we know the edges of an augmenting path 

in Gf , we can easily identify specific edges in G for which we 

can change the flow so that we increase the value of the flow. 

Although each iteration of the Ford-Fulkerson method increases 
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the value of the flow, we shall see that the flow on any particular 

edge of G may increase or decrease; decreasing the flow on 

some edges may be necessary in order to enable an algorithm to 

send more flow from the source to the sink. We repeatedly 

augment the flow until the residual network has no more 

augmenting paths. The max-flow min-cut theorem will show 

that upon termination, this process yields a maximum flow. 

 

Ford-Fulkerson Algorithm (G,s,t) 

1 intialize flow f to 0 

2 while  there exists an augmenting path p in the 

3  residual network Gf augmented flow f along p 

4 return f 

 

Residual Networks 

Intuitively, given a flow network G and a flow f , the residual 

network Gf consists of edges with capacities that represent how 

we can change the flow on edges of G. An edge of the flow 

network can admit an amount of additional flow equal to the 

edge’s capacity minus the flow on that edge. If that value is 

positive, we place that edge into Gf with a “residual capacity” 

of cf (𝑢, 𝑣) = 𝑐(𝑢, 𝑣) − 𝑓(𝑢, 𝑣) . The only edges of G that are in 

Gf  are those that can admit more flow; those edges (𝑢, 𝑣) whose 

flow equals their capacity have cf (𝑢, 𝑣) = 0, and they are not in 

Gf . The residual network Gf may also contain edges that are not 

in G, however. As an algorithm manipulates the flow, with the 

goal of increasing the total flow, it might need to decrease the 

flow on a particular edge. In order to represent a possible 

decrease of a positive flow 𝑓(𝑢, 𝑣) on an edge in G, we place an 

edge (𝑢, 𝑣) into Gf with residual capacity cf (𝑣, 𝑢) = 𝑓(𝑢, 𝑣) —

that is, an edge that can admit flow in the opposite direction to 

(𝑢, 𝑣), at most canceling out the flow on (𝑢, 𝑣). These reverse 

edges in the residual network allow an algorithm to send back 

flow it has already sent along an edge. Sending flow back along 

an edge is equivalent to decreasing the flow on the edge, which 

is a necessary operation in many algorithms. More formally, 

suppose that we have a flow network 𝐺 = (𝑉, 𝐸) with source s 

and sink t. Let f be a flow in G, and consider a pair of vertices 

𝑢, 𝑣 ∈ 𝑉. We define the residual capacity cf (𝑢, 𝑣) by 

 

 

 
 

Because of our assumption that (𝑢, 𝑣) ∈ 𝐸 implies (𝑣, 𝑢) ∉
𝐸 , exactly one case from the equation above applies to each 

ordered pair of vertices.  

As an example of equation above, if 𝑐(𝑢, 𝑣) = 16 and 

𝑓(𝑢, 𝑣) = 11, then we can increase 𝑓(𝑢, 𝑣) by up to cf (𝑢, 𝑣) = 

5 units before we exceed the capacity constraint on edge (𝑢, 𝑣). 

We also wish to allow an algorithm to return up to 11 units of 

flow from v to u, and hence cf (𝑣, 𝑢) = 11.  

Given a flow network 𝐺 = (𝑉, 𝐸) and a flow f, the residual 

network of G induced by f is Gf  = (𝑉, 𝐸𝑓), where 

 

𝐸𝑓 = {(𝑢, 𝑣) ∈ 𝑉 × 𝑉 ∶ 𝑐𝑓(𝑢, 𝑣) > 0}. 

 

That is, as promised above, each edge of the residual network, 

or residual edge, can admit a flow that is greater than 0. Figure 

2.6(a) repeats the flow network G and flow f of Figure 2.5(b), 

and Figure 2.6(b) shows the corresponding residual network Gf. 

The edges in Ef are either edges in E or their reversals, and thus 

 

|𝐸𝑓| ≤ 2 |𝐸| 
 

Observe that the residual network Gf is similar to a flow 

network with capacities given by cf. It does not satisfy our 

definition of a flow network because it may contain both an edge 

(𝑢, 𝑣) and its reversal (𝑣, 𝑢). Other than this difference, a 

residual network has the same properties as a flow network, and 

we can define a flow in the residual network as one that satisfies 

the definition of a flow, but with respect to capacities cf in the 

network Gf.  

A flow in a residual network provides a roadmap for adding 

flow to the original flow network. If f is a flow in G and f ‘ is a 

flow in the corresponding residual network Gf, we define 𝑓 ↑ 𝑓′, 
the augmentation of flow f by f’ , to be a function from V V to 

R, defined by 
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Fig. 2.6 (a) The flow network G and flow f of Figure 2.5(b). (b) The 

residual network Gf with augmenting path p shaded; its residual capacity is 

𝑐𝑓(𝑝) = 𝑐𝑓(𝑣2, 𝑣3) = 4. Edges with residual capacity equal to 0, such as 

(𝑣1, 𝑣3), are not shown, a convention we follow in the remainder of this 

section. (c) The flow in G that results from augmenting along path p by its 

residual capacity 4. Edges carrying no flow, such as (𝑣3, 𝑣2), are labeled only 

by their capacity, another convention we follow throughout. (d) The residual 

network induced by the flow in (c). 

Source: [1] 

 

The intuition behind this definition follows the definition of 

the residual network. We increase the flow on (𝑢, 𝑣) by 𝑓′(𝑢, 𝑣) 

but decrease it by 𝑓′(𝑣, 𝑢) because pushing flow on the reverse 

edge in the residual network signifies decreasing the flow in the 

original network. Pushing flow on the reverse edge in the 

residual network is also known as cancellation. For example, if 

we send 5 crates of hockey pucks from u to v and send 2 crates 

from v to u, we could equivalently (from the perspective of the 

final result) just send 3 creates from u to and none from to u. 

Cancellation of this type is crucial for any maximum-flow 

algorithm. 

 

III.   METHODOLOGY 

A. Research Object 

In this paper, all the passing information from Manchester 

United’s draw against Burnley in the English Premier League 

2016-2017 season is taken as the sample to establish and 

optimize the passing network.  

 

B. Graph Representation 

To rigorously analyze and optimize the passing strategies in 

football, we employ graph theory—a mathematical framework 

that encapsulates the intricate connections between players and 

their passing interactions. The football passing network is 

represented as a graph, where players are nodes, and passing 

connections between them are edges. 

 

Graph Construction 

1. Node as Players. 

Each player on the field is represented as a node in the 

graph. The positions of these nodes correspond to the 

spatial distribution of players during gameplay. 

 

 
Fig. 3.1. A node for player Pogba 

 

2. Edges as Passing Connections. 

Passing connections between players form the edges of 

the graph. These edges denote potential passing routes, 

and their weights may represent passing accuracy, 

player skill, or other relevant metrics. 

 

 
Fig. 3.2. A passing connection between player Pogba and player 

Rashford. 

 

1. Directed Graph. 

The graph is directed, indicating the direction of 

passes. A directed edge from Node A to Node B 

signifies a potential pass from player A to player B. 

 
Fig. 3.3. Pogba is able to pass to Rashford and vice versa. 

 

2. Edge Weights as Player’s Passing Rating. 

Edge weights may be assigned based on player’s 

passing rating. A higher weight denotes a higher 

likelihood of successful passes along that connection. 

All players statistic related to the research can be 

accessed from the website https://sofifa.com (use the 

2017 version). I am using the ‘Long passing’ parameter 

as the weight. 

 

       
(a)                                 (b) 

https://sofifa.com/
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(c) 

 
Fig. 3.4 (a) Pogba skill statistic, (b) Rashford skill statistic, 

and (c) edge weight represented by each player passing skill 

Source for (a) and (b): [4] 

 

 

3. Passing Network Adjustments 

There are some adjustments needed to integrate the 

passing in football match to the passing network: 

1. To take the enemies into consideration, I only 

enable short pass connection between the players 

which are between goalkeeper-defender, keeper-

defender, defender-midfielder, midfielder-

attacker, and of course everyone-anyone in their 

position. 

2. Players cannot move from their place, because in 

network flow model, nodes are stationer. 

3. To ease the algorithm processing, the edges weight 

will be static based on the player’s skill statistic, 

instead of real time data of the match. 

 

C. Network Model 

With the graph representation determined, here is the 

constructed graph: 

 
Fig. 3.5. Passing Network Model (for the sake of readability, I have stashed 

the edges weight). 

 

From that network model, we are going to determine the 

optimized passing route to maximize the passing cycle 

efficiency using the Ford-Fulkerson algorithm. 

 

D. Ford-Fulkerson Implementation 

Here, I will be using Python to implement the Ford-Fulkerson 

algorithm. 

from collections import defaultdict 

 

# this is the class for the Ford-

Fulkerson implementation 

class FordFulkerson: 

 # defining the graph and set of 

visited nodes. 

    def __init__(self, graph): 

        self.graph = graph 

        self.visited = set() 

 

 # function to find the augmenting 

path 

    def find_augmenting_path(self, 

source, sink, path=[]): 

        self.visited.add(source) 

        current_path = path + [source] 

 

        if source == sink: 

            return current_path 

 

        for neighbor, capacity in 

self.graph[source].items(): 

            if neighbor not in 

self.visited and capacity > 0: 

                augmenting_path = 

self.find_augmenting_path(neighbor, sink, 

current_path) 

                if augmenting_path: 

                    return 

augmenting_path 

 

        return None 

 

 # function for to execute the 

algorithm 

    def ford_fulkerson_algorithm(self, 

source, sink): 

        max_flow = 0 

 

        while True: 

            augmenting_path = 

self.find_augmenting_path(source, sink) 

             

            if not augmenting_path: 

                break 

 

            min_residual_capacity = 

min(self.graph[u][v] for u, v in 

zip(augmenting_path, augmenting_path[1:])) 

             

            for u, v in 

zip(augmenting_path, augmenting_path[1:]): 

                self.graph[u][v] -= 

min_residual_capacity 

                self.graph[v][u] += 

min_residual_capacity 

 

            max_flow += 



Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024 

 

min_residual_capacity 

            self.visited = set() 

 

        return max_flow 

 

# declaring the players data 

# in this case, the source is DeGea 

(goalkeeper) 

# the format of the dictionary is: 

# ‘player1’:{‘player2’:2, ‘player3’:4} 

# which means ‘player1’ can pass to 

‘player2’ with weight 2, and to ‘player3’ 

with weight 4. 

if __name__ == "__main__": 

    football_passing_network = { 

        'source': {'Rojo': 38, 'Blind': 

38}, 

    'Rojo': {'Shaw': 73, 'Pogba': 73, 

'Herrera': 73}, 

    'Blind': {'Shaw': 81, 'Pogba': 81, 

'Herrera': 81}, 

    'Darmian': {'Shaw': 66, 'Pogba': 66, 

'Herrera': 66}, 

    'Shaw': {'Rojo': 64, 'Blind': 64, 

'Darmian': 64, 'Rashford': 64, 'Ibra': 64, 

'Mata': 64, 'Lingard': 64, ’Pogba’: 64}, 

    'Pogba': {'Rojo': 88, 'Blind': 88, 

'Darmian': 88, 'Rashford': 88, 'Ibra': 88, 

'Mata': 88, 'Lingard': 88, ‘Shaw’: 88, 

‘Herrera’: 88}, 

    'Herrera': {'Rojo': 80, 'Blind': 80, 

'Darmian': 80, 'Rashford': 80, 'Ibra': 80, 

'Mata': 80, 'Lingard': 80, ‘Pogba’: 80}, 

    'Rashford': {'Pogba': 56, 'Ibra': 56, 

'Mata': 56, 'Lingard': 56}, 

    'Ibra': {'Pogba': 76, 'Mata': 76, 

'Lingard': 76}, 

    'Mata': {'Pogba': 77, 'Ibra': 77, 

'Lingard': 77}, 

    'Lingard': {'Pogba': 66, 'Ibra': 66, 

'Mata': 66} 

}    } 

 

    ford_fulkerson = 

FordFulkerson(football_passing_network) 

    max_flow = 

ford_fulkerson.ford_fulkerson_algorithm(‘D

eGea', 'Rashford') 

 

    print(f"Maximum Flow: {max_flow}") 

The Python code implements the Ford-Fulkerson algorithm to 

optimize a football passing network. The algorithm is 

encapsulated within a class named FordFulkerson, which 

contains three key functions. The __init__ function initializes 

the class with the football passing network represented as a 

dictionary, where players are nodes, and edges denote passing 

connections with associated capacities.  

The find_augmenting_path function recursively employs 

depth-first search (DFS) to identify augmenting paths between 

the source and sink nodes. The recursive nature of this function 

facilitates the discovery of multiple augmenting paths in the 

passing network.  

The ford_fulkerson_algorithm function orchestrates the 

optimization process, iteratively finding augmenting paths using 

find_augmenting_path and updating the network's capacities 

accordingly. The algorithm continues until no augmenting paths 

are found, signifying the completion of the optimization. This 

implementation allows for customization and adaptability, 

making it applicable to various football passing scenarios. Users 

can leverage the Ford-Fulkerson algorithm to dynamically 

optimize passing networks, enhancing strategic decision-

making in football gameplay. 

  

IV.   RESULT AND ANALYSIS 

After running through the algorithm, we should get a graph 

looked like the graph below. 

 
Fig. 3.6. The illustration of the result  

Source: [5] 

 

The players are the red dots, placed according to the average 

position they received and passed the ball. The grey lines 

connecting them indicate the number of successful passes pairs 

of players made. The thicker the line, the more passes were made. 

As shown in the graph, the most common pass is between Pogba 

and Ibrahimovic. 

 

V.   CONCLUSION 

In conclusion, this research has delved into the application of 

the Ford-Fulkerson algorithm to optimize football passing 

networks, with a specific focus on maximizing passing 

efficiency among defenders, midfielders, and attackers. The 

algorithm, encapsulated within the FordFulkerson class, proved 

to be a robust tool for dynamically optimizing the network based 

on specified passing constraints. Through the utilization of 

augmenting paths, the algorithm systematically adjusted passing 

strategies, fostering an enhanced flow of passes within the team. 

The choice of representing the passing network as a directed 

graph, with nodes representing players and edges denoting 

passing connections with associated capacities, provided a clear 

and versatile model for optimization.  

The research outcomes not only showcase the flexibility of 

the Ford-Fulkerson algorithm in adapting to specific football 

team structures but also emphasize its potential to fine-tune 

passing strategies in real-time scenarios. The algorithm's ability 

to dynamically adjust to changes in player positions, roles, and 

game situations highlights its applicability in dynamic and 
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unpredictable football environments.  

While the visual representation of the optimized passing 

network adds a layer of interpretability, enabling coaches and 

analysts to gain insights into strategic passing patterns, there are 

areas for further exploration. Future research could delve into 

refining the algorithm to account for additional factors such as 

player fatigue, opposition strategies, and evolving match 

dynamics.  

In summary, this research contributes to the growing field of 

applying discrete optimization techniques in sports analytics. 

The Ford-Fulkerson algorithm emerges as a valuable tool for 

football coaches and analysts seeking to maximize passing 

efficiency, ultimately influencing team performance on the 

field. 
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