
Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Network Flow Models in Football: Maximizing

Passing Efficiency

Owen Tobias Sinurat - 13522131

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13522131@std.stei.itb.ac.id

Abstract— This paper delves into the application of network flow

models in the context of football strategy, specifically focusing on

the optimization of passing efficiency within a team. Leveraging

principles from discrete mathematics, particularly graph theory,

the study explores the dynamics of passing networks and their

impact on overall team performance. By representing player

interactions as a directed graph, where nodes represent players and

edges denote passes, we employ network flow algorithms to analyze

and optimize passing efficiency. The objective is to identify key

players, strategic passing patterns, and configurations that

maximize ball circulation and enhance the team's overall

performance. The findings aim to contribute valuable insights to

coaches, analysts, and researchers interested in leveraging

mathematical modeling to improve football strategy and player

coordination.

Keywords—Network Flow Models, Graph, Graph Application in

Football, Passing in Football, Discrete Mathematics in Football.

I. INTRODUCTION

In the realm of sports analytics, the application of

mathematical models has become increasingly pivotal in

unraveling the intricacies of game dynamics and player

interactions. Football, as a sport characterized by its fluidity and

dynamic team play, provides a fertile ground for the exploration

of innovative analytical approaches. This paper delves into the

integration of network flow models derived from discrete

mathematics to scrutinize and optimize passing efficiency in

football.

The passing network within a football team is analogous to

the intricate web of connections in a network, where players

represent nodes and passes between them serve as directed

edges. Drawing inspiration from the field of network theory, our

research aims to unveil the underlying patterns and dynamics of

passing interactions among players. The central objective is to

employ network flow algorithms to identify optimal passing

strategies that maximize ball circulation, ultimately contributing

to enhanced team performance on the pitch.

As we navigate through this exploration, the significance of

network flow models in dissecting the passing intricacies in

football becomes evident. By treating each player as a vital node

and passes as essential edges, we embark on a journey to analyze

how the flow of possession can be strategically optimized. This

paper not only presents a theoretical framework for the

application of network flow models but also seeks to provide

practical insights for coaches, analysts, and football enthusiasts

interested in leveraging mathematical tools to refine team

strategies.

The subsequent sections will delve into the foundational

principles of network flow models, their adaptation to the

football context, and the implications of our findings on

understanding and improving passing efficiency in the beautiful

game. Through this exploration, we aim to contribute to the

evolving landscape of sports analytics, where the marriage of

mathematics and football strategy opens new avenues for

elevating the performance of teams on the field.

II. THEORY

A. Graph

A graph G is an ordered pair (V (G),E(G)) consisting of a set

V (G) of vertices and a set E(G), disjoint from V (G), of edges,

together with an incidence function ψG that associates with each

edge of G an unordered pair of (not necessarily distinct) vertices

of G. If e is an edge and u and v are vertices such that ψG(e) =

{u,v}, then e is said to join u and v, and the vertices u and v are

called the ends of e. We denote the numbers of vertices and

edges in G by v(G) and e(G); these two basic parameters are

called the order and size of G, respectively. Two examples of

graphs should serve to clarify the definition. For notational

simplicity, we write uv for the unordered pair {u,v}.

Example 1.

G = (V (G), E(G))

where

V (G) = {u, v, w, x, y}

E(G) = {a, b, c, d, e, f, g, h}

and ψG is defined by

ψG(a) = uv ψG(b) = uu ψG(c) = vw ψG(d) = wx

ψG(e) = vx ψG(f) = wx ψG(g) = ux ψG(h) = xy

Drawing of Graphs

Graphs are so named because they can be represented

graphically, and it is this graphical representation which helps

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

us understand many of their properties. Each vertex is indicated

by a point, and each edge by a line joining the points

representing its ends. Diagrams of G and H are shown in Figure

1.1. (For clarity, vertices are represented by small circles.)

Fig. 2.1. Diagrams of the graphs G and H

Source: [3]

There is no single correct way to draw a graph; the relative

positions of points representing vertices and the shapes of lines

representing edges usually have no significance. In Figure 1.1,

the edges of G are depicted by curves, and those of H by straight-

line segments. A diagram of a graph merely depicts the

incidence relation holding between its vertices and edges.

However, we often draw a diagram of a graph and refer to it as

the graph itself; in the same spirit, we call its points ‘vertices’

and its lines ‘edges’.

Most of the definitions and concepts in graph theory are

suggested by this graphical representation. The ends of an edge

are said to be incident with the edge, and vice versa. Two

vertices which are incident with a common edge are adjacent, as

are two edges which are incident with a common vertex, and two

distinct adjacent vertices are neighbours. The set of neighbours

of a vertex v in a graph G is denoted by NG(v).

An edge with identical ends is called a loop, and an edge with

distinct ends a link. Two or more links with the same pair of

ends are said to be parallel edges. In the graph G of Figure 1.1,

the edge b is a loop, and all other edges are links; the edges d

and f are parallel edges.

Path and Cycle

A path is a simple graph whose vertices can be

arranged in a linear sequence in such a way that two vertices are

adjacent if they are consecutive in the sequence, and are

nonadjacent otherwise. Likewise, a cycle on three or more

vertices is a simple graph whose vertices can be arranged in a

cyclic sequence in such a way that two vertices are adjacent if

they are consecutive in the sequence, and are nonadjacent

otherwise; a cycle on one vertex consists of a single vertex with

a loop, and a cycle on two vertices consists of two vertices joined

by a pair of parallel edges. The length of a path or a cycle is the

number of its edges. A path or cycle of length k is called a k-

path or k-cycle, respectively; the path or cycle is odd or even

according to the parity of k. A 3-cycle is often called a triangle,

a 4-cycle a quadrilateral, a 5-cycle a pentagon, a 6-cycle a

hexagon, and so on. Figure 1.3 depicts a 3-path and a 5-cycle.

Fig. 2.2. (a) A path of length three, and (b) a cycle of length five.

Source: [3]

Connected Graph

Certain types of graphs play prominent roles in graph theory. A

graph is connected if, for every partition of its vertex set into

two nonempty sets X and Y , there is an edge with one end in X

and one end in Y ; otherwise the graph is disconnected. In other

words, a graph is disconnected if its vertex set can be partitioned

into two nonempty subsets X and Y so that no edge has one end

in X and one end in Y . (It is instructive to compare this

definition with that of a bipartite graph.) Examples of connected

and disconnected graphs are displayed in Figure 1.4.

Fig. 2.3. (a) A connected graph, and (b) a disconnected graph

Source: [3]

Directed Graph

Although many problems lend themselves to graph-theoretic

formulation, the concept of a graph is sometimes not quite

adequate. When dealing with problems of traffic flow, for

example, it is necessary to know which roads in the network are

one-way, and in which direction traffic is permitted. What we

need is a graph in which each link has an assigned orientation,

namely a directed graph.

Fig. 2.4. (G1) an undirected graph and (G2) a directed graph.

Source: [2]

Formally, a directed graph D is an ordered pair (V (D), A(D))

consisting of a set V := V (D) of vertices and a set A := A(D),

disjoint from V (D), of arcs, together with an incidence function

ψD that associates with each arc of D an ordered pair of (not

necessarily distinct) vertices of D. If a is an arc and ψD(a) =

(u,v), then a is said to join u to v; we also say that u dominates

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

v. The vertex u is the tail of a, and the vertex v its head; they are

the two ends of a. Occasionally, the orientation of an arc is

irrelevant to the discussion. In such instances, we refer to the arc

as an edge of the directed graph. The number of arcs in D is

denoted by a(D). The vertices which dominate a vertex v are its

in-neighbours, those which are dominated by the vertex its out-

neighbours. These sets are denoted by N – D (v) and N + D (v),

respectively.

B. Flow Network

A flow network 𝐺 = (𝑉, 𝐸) is a directed graph in which each

edge (𝑢, 𝑣) ∈ 𝐸 has a nonnegative capacity c(𝑢, 𝑣) ≥ 0. We

further require that if E contains an edge (𝑢, 𝑣), then there is no

edge (𝑣, 𝑢) in the reverse direction. (We shall see shortly how to

work around this restriction.) If (𝑢, 𝑣) ∉ 𝐸, then for convenience

we define 𝑐(𝑢, 𝑣) = 0, and we disallow self-loops. We

distinguish two vertices in a flow network: a source s and a sink

t. For convenience, we assume that each vertex lies on some path

from the source to the sink. That is, for each vertex 𝑣 ∈ 𝑉 , the

flow network contains a path 𝑠 ↝ 𝑣 ↝ 𝑡. The graph is therefore

connected and, since each vertex other than s has at least one

entering edge, |𝐸| ≥ |𝑉| − 1. Figure 26.1 shows an example of a

flow network. We are now ready to define flows more formally.

Let 𝐺 = (𝑉, 𝐸) be a flow network with a capacity function c. Let

s be the source of the network, and let t be the sink. A flow in G

is a real-valued function 𝑓 ∶ 𝑉 × 𝑉 → ℝ R that satisfies the

following two properties:

Capacity constraint: For all 𝑢, 𝑣 ∈ 𝑉, we require

0 ≤ 𝑓(𝑢, 𝑣) ≤ 𝑐(𝑢, 𝑣).

Flow conservation: For all 𝑢 ∈ 𝑉 − {𝑠, 𝑡}, we require

∑ 𝑓(𝑣, 𝑢) =

𝑣 ∈ 𝑉

∑ 𝑓(𝑢, 𝑣)

𝑣 ∈ 𝑉

When (𝑢, 𝑣) ∉ 𝐸, there can be no flow from u to v, and 𝑓(𝑢, 𝑣) =
0.

Fig. 2.5. (a) A flow network 𝐺 = (𝑉, 𝐸) for the Lucky Puck Company’s

trucking problem. The Vancouver factory is the source s, and the Winnipeg

warehouse is the sink t. The company ships pucks through intermediate cities,

but only 𝑐(𝑢, 𝑣) crates per day can go from city u to city . Each edge is labeled

with its capacity. (b) A flow f in G with value |𝑓| = 19. Each edge (𝑢, 𝑣) is

labeled by 𝑓(𝑢, 𝑣)/𝑐(𝑢, 𝑣). The slash notation merely separates the flow and

capacity; it does not indicate division.

Source: [1]

We call the nonnegative quantity 𝑓(𝑢, 𝑣) the flow from vertex

u to vertex v. The value of j of a flow f is defined as

|𝑓| = ∑ 𝑓(𝑠, 𝑣) −

𝑣 ∈ 𝑉

∑ 𝑓(𝑣, 𝑠)

𝑣 ∈ 𝑉

that is, the total flow out of the source minus the flow into the

source. (Here, the jj notation denotes flow value, not absolute

value or cardinality.) Typically, a flow network will not have

any edges into the source, and the flow into the source, given by

the summation ∑ 𝑓(𝑣, 𝑠)𝑣 ∈ 𝑉 will be 0. We include it, however,

because when we introduce residual networks later in this

chapter, the flow into the source will become significant. In the

maximum-flow problem, we are given a flow network G with

source s and sink t, and we wish to find a flow of maximum

value. Before seeing an example of a network-flow problem, let

us briefly explore the definition of flow and the two flow

properties. The capacity constraint simply says that the flow

from one vertex to another must be nonnegative and must not

exceed the given capacity. The flow-conservation property says

that the total flow into a vertex other than the source or sink must

equal the total flow out of that vertex—informally, “flow in

equals flow out.”

C. The Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithm depends on three important

ideas that transcend the method and are relevant to many flow

algorithms and problems: residual networks, augmenting paths,

and cuts. These ideas are essential to the important max-flow

min-cut theorem, which characterizes the value of a maximum

flow in terms of cuts of the flow network. We end this section

by presenting one specific implementation of the Ford-

Fulkerson method and analyzing its running time. The Ford-

Fulkerson method iteratively increases the value of the flow. We

start with 𝑓(𝑢, 𝑣) = 0 for all 𝑢, 𝑣 ∈ 𝑉, giving an initial flow of

value 0. At each iteration, we increase the flow value in G by

finding an “augmenting path” in an associated “residual

network” Gf . Once we know the edges of an augmenting path

in Gf , we can easily identify specific edges in G for which we

can change the flow so that we increase the value of the flow.

Although each iteration of the Ford-Fulkerson method increases

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

the value of the flow, we shall see that the flow on any particular

edge of G may increase or decrease; decreasing the flow on

some edges may be necessary in order to enable an algorithm to

send more flow from the source to the sink. We repeatedly

augment the flow until the residual network has no more

augmenting paths. The max-flow min-cut theorem will show

that upon termination, this process yields a maximum flow.

Ford-Fulkerson Algorithm (G,s,t)

1 intialize flow f to 0

2 while there exists an augmenting path p in the

3 residual network Gf augmented flow f along p

4 return f

Residual Networks

Intuitively, given a flow network G and a flow f , the residual

network Gf consists of edges with capacities that represent how

we can change the flow on edges of G. An edge of the flow

network can admit an amount of additional flow equal to the

edge’s capacity minus the flow on that edge. If that value is

positive, we place that edge into Gf with a “residual capacity”

of cf (𝑢, 𝑣) = 𝑐(𝑢, 𝑣) − 𝑓(𝑢, 𝑣) . The only edges of G that are in

Gf are those that can admit more flow; those edges (𝑢, 𝑣) whose

flow equals their capacity have cf (𝑢, 𝑣) = 0, and they are not in

Gf . The residual network Gf may also contain edges that are not

in G, however. As an algorithm manipulates the flow, with the

goal of increasing the total flow, it might need to decrease the

flow on a particular edge. In order to represent a possible

decrease of a positive flow 𝑓(𝑢, 𝑣) on an edge in G, we place an

edge (𝑢, 𝑣) into Gf with residual capacity cf (𝑣, 𝑢) = 𝑓(𝑢, 𝑣) —

that is, an edge that can admit flow in the opposite direction to

(𝑢, 𝑣), at most canceling out the flow on (𝑢, 𝑣). These reverse

edges in the residual network allow an algorithm to send back

flow it has already sent along an edge. Sending flow back along

an edge is equivalent to decreasing the flow on the edge, which

is a necessary operation in many algorithms. More formally,

suppose that we have a flow network 𝐺 = (𝑉, 𝐸) with source s

and sink t. Let f be a flow in G, and consider a pair of vertices

𝑢, 𝑣 ∈ 𝑉. We define the residual capacity cf (𝑢, 𝑣) by

Because of our assumption that (𝑢, 𝑣) ∈ 𝐸 implies (𝑣, 𝑢) ∉
𝐸 , exactly one case from the equation above applies to each

ordered pair of vertices.

As an example of equation above, if 𝑐(𝑢, 𝑣) = 16 and

𝑓(𝑢, 𝑣) = 11, then we can increase 𝑓(𝑢, 𝑣) by up to cf (𝑢, 𝑣) =

5 units before we exceed the capacity constraint on edge (𝑢, 𝑣).

We also wish to allow an algorithm to return up to 11 units of

flow from v to u, and hence cf (𝑣, 𝑢) = 11.

Given a flow network 𝐺 = (𝑉, 𝐸) and a flow f, the residual

network of G induced by f is Gf = (𝑉, 𝐸𝑓), where

𝐸𝑓 = {(𝑢, 𝑣) ∈ 𝑉 × 𝑉 ∶ 𝑐𝑓(𝑢, 𝑣) > 0}.

That is, as promised above, each edge of the residual network,

or residual edge, can admit a flow that is greater than 0. Figure

2.6(a) repeats the flow network G and flow f of Figure 2.5(b),

and Figure 2.6(b) shows the corresponding residual network Gf.

The edges in Ef are either edges in E or their reversals, and thus

|𝐸𝑓| ≤ 2 |𝐸|

Observe that the residual network Gf is similar to a flow

network with capacities given by cf. It does not satisfy our

definition of a flow network because it may contain both an edge

(𝑢, 𝑣) and its reversal (𝑣, 𝑢). Other than this difference, a

residual network has the same properties as a flow network, and

we can define a flow in the residual network as one that satisfies

the definition of a flow, but with respect to capacities cf in the

network Gf.

A flow in a residual network provides a roadmap for adding

flow to the original flow network. If f is a flow in G and f ‘ is a

flow in the corresponding residual network Gf, we define 𝑓 ↑ 𝑓′,
the augmentation of flow f by f’ , to be a function from V V to

R, defined by

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

Fig. 2.6 (a) The flow network G and flow f of Figure 2.5(b). (b) The

residual network Gf with augmenting path p shaded; its residual capacity is

𝑐𝑓(𝑝) = 𝑐𝑓(𝑣2, 𝑣3) = 4. Edges with residual capacity equal to 0, such as

(𝑣1, 𝑣3), are not shown, a convention we follow in the remainder of this

section. (c) The flow in G that results from augmenting along path p by its

residual capacity 4. Edges carrying no flow, such as (𝑣3, 𝑣2), are labeled only

by their capacity, another convention we follow throughout. (d) The residual

network induced by the flow in (c).

Source: [1]

The intuition behind this definition follows the definition of

the residual network. We increase the flow on (𝑢, 𝑣) by 𝑓′(𝑢, 𝑣)

but decrease it by 𝑓′(𝑣, 𝑢) because pushing flow on the reverse

edge in the residual network signifies decreasing the flow in the

original network. Pushing flow on the reverse edge in the

residual network is also known as cancellation. For example, if

we send 5 crates of hockey pucks from u to v and send 2 crates

from v to u, we could equivalently (from the perspective of the

final result) just send 3 creates from u to and none from to u.

Cancellation of this type is crucial for any maximum-flow

algorithm.

III. METHODOLOGY

A. Research Object

In this paper, all the passing information from Manchester

United’s draw against Burnley in the English Premier League

2016-2017 season is taken as the sample to establish and

optimize the passing network.

B. Graph Representation

To rigorously analyze and optimize the passing strategies in

football, we employ graph theory—a mathematical framework

that encapsulates the intricate connections between players and

their passing interactions. The football passing network is

represented as a graph, where players are nodes, and passing

connections between them are edges.

Graph Construction

1. Node as Players.

Each player on the field is represented as a node in the

graph. The positions of these nodes correspond to the

spatial distribution of players during gameplay.

Fig. 3.1. A node for player Pogba

2. Edges as Passing Connections.

Passing connections between players form the edges of

the graph. These edges denote potential passing routes,

and their weights may represent passing accuracy,

player skill, or other relevant metrics.

Fig. 3.2. A passing connection between player Pogba and player

Rashford.

1. Directed Graph.

The graph is directed, indicating the direction of

passes. A directed edge from Node A to Node B

signifies a potential pass from player A to player B.

Fig. 3.3. Pogba is able to pass to Rashford and vice versa.

2. Edge Weights as Player’s Passing Rating.

Edge weights may be assigned based on player’s

passing rating. A higher weight denotes a higher

likelihood of successful passes along that connection.

All players statistic related to the research can be

accessed from the website https://sofifa.com (use the

2017 version). I am using the ‘Long passing’ parameter

as the weight.

(a) (b)

https://sofifa.com/

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

(c)

Fig. 3.4 (a) Pogba skill statistic, (b) Rashford skill statistic,

and (c) edge weight represented by each player passing skill

Source for (a) and (b): [4]

3. Passing Network Adjustments

There are some adjustments needed to integrate the

passing in football match to the passing network:

1. To take the enemies into consideration, I only

enable short pass connection between the players

which are between goalkeeper-defender, keeper-

defender, defender-midfielder, midfielder-

attacker, and of course everyone-anyone in their

position.

2. Players cannot move from their place, because in

network flow model, nodes are stationer.

3. To ease the algorithm processing, the edges weight

will be static based on the player’s skill statistic,

instead of real time data of the match.

C. Network Model

With the graph representation determined, here is the

constructed graph:

Fig. 3.5. Passing Network Model (for the sake of readability, I have stashed

the edges weight).

From that network model, we are going to determine the

optimized passing route to maximize the passing cycle

efficiency using the Ford-Fulkerson algorithm.

D. Ford-Fulkerson Implementation

Here, I will be using Python to implement the Ford-Fulkerson

algorithm.

from collections import defaultdict

this is the class for the Ford-

Fulkerson implementation

class FordFulkerson:

 # defining the graph and set of

visited nodes.

 def __init__(self, graph):

 self.graph = graph

 self.visited = set()

 # function to find the augmenting

path

 def find_augmenting_path(self,

source, sink, path=[]):

 self.visited.add(source)

 current_path = path + [source]

 if source == sink:

 return current_path

 for neighbor, capacity in

self.graph[source].items():

 if neighbor not in

self.visited and capacity > 0:

 augmenting_path =

self.find_augmenting_path(neighbor, sink,

current_path)

 if augmenting_path:

 return

augmenting_path

 return None

 # function for to execute the

algorithm

 def ford_fulkerson_algorithm(self,

source, sink):

 max_flow = 0

 while True:

 augmenting_path =

self.find_augmenting_path(source, sink)

 if not augmenting_path:

 break

 min_residual_capacity =

min(self.graph[u][v] for u, v in

zip(augmenting_path, augmenting_path[1:]))

 for u, v in

zip(augmenting_path, augmenting_path[1:]):

 self.graph[u][v] -=

min_residual_capacity

 self.graph[v][u] +=

min_residual_capacity

 max_flow +=

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

min_residual_capacity

 self.visited = set()

 return max_flow

declaring the players data

in this case, the source is DeGea

(goalkeeper)

the format of the dictionary is:

‘player1’:{‘player2’:2, ‘player3’:4}

which means ‘player1’ can pass to

‘player2’ with weight 2, and to ‘player3’

with weight 4.

if __name__ == "__main__":

 football_passing_network = {

 'source': {'Rojo': 38, 'Blind':

38},

 'Rojo': {'Shaw': 73, 'Pogba': 73,

'Herrera': 73},

 'Blind': {'Shaw': 81, 'Pogba': 81,

'Herrera': 81},

 'Darmian': {'Shaw': 66, 'Pogba': 66,

'Herrera': 66},

 'Shaw': {'Rojo': 64, 'Blind': 64,

'Darmian': 64, 'Rashford': 64, 'Ibra': 64,

'Mata': 64, 'Lingard': 64, ’Pogba’: 64},

 'Pogba': {'Rojo': 88, 'Blind': 88,

'Darmian': 88, 'Rashford': 88, 'Ibra': 88,

'Mata': 88, 'Lingard': 88, ‘Shaw’: 88,

‘Herrera’: 88},

 'Herrera': {'Rojo': 80, 'Blind': 80,

'Darmian': 80, 'Rashford': 80, 'Ibra': 80,

'Mata': 80, 'Lingard': 80, ‘Pogba’: 80},

 'Rashford': {'Pogba': 56, 'Ibra': 56,

'Mata': 56, 'Lingard': 56},

 'Ibra': {'Pogba': 76, 'Mata': 76,

'Lingard': 76},

 'Mata': {'Pogba': 77, 'Ibra': 77,

'Lingard': 77},

 'Lingard': {'Pogba': 66, 'Ibra': 66,

'Mata': 66}

} }

 ford_fulkerson =

FordFulkerson(football_passing_network)

 max_flow =

ford_fulkerson.ford_fulkerson_algorithm(‘D

eGea', 'Rashford')

 print(f"Maximum Flow: {max_flow}")

The Python code implements the Ford-Fulkerson algorithm to

optimize a football passing network. The algorithm is

encapsulated within a class named FordFulkerson, which

contains three key functions. The __init__ function initializes

the class with the football passing network represented as a

dictionary, where players are nodes, and edges denote passing

connections with associated capacities.

The find_augmenting_path function recursively employs

depth-first search (DFS) to identify augmenting paths between

the source and sink nodes. The recursive nature of this function

facilitates the discovery of multiple augmenting paths in the

passing network.

The ford_fulkerson_algorithm function orchestrates the

optimization process, iteratively finding augmenting paths using

find_augmenting_path and updating the network's capacities

accordingly. The algorithm continues until no augmenting paths

are found, signifying the completion of the optimization. This

implementation allows for customization and adaptability,

making it applicable to various football passing scenarios. Users

can leverage the Ford-Fulkerson algorithm to dynamically

optimize passing networks, enhancing strategic decision-

making in football gameplay.

IV. RESULT AND ANALYSIS

After running through the algorithm, we should get a graph

looked like the graph below.

Fig. 3.6. The illustration of the result

Source: [5]

The players are the red dots, placed according to the average

position they received and passed the ball. The grey lines

connecting them indicate the number of successful passes pairs

of players made. The thicker the line, the more passes were made.

As shown in the graph, the most common pass is between Pogba

and Ibrahimovic.

V. CONCLUSION

In conclusion, this research has delved into the application of

the Ford-Fulkerson algorithm to optimize football passing

networks, with a specific focus on maximizing passing

efficiency among defenders, midfielders, and attackers. The

algorithm, encapsulated within the FordFulkerson class, proved

to be a robust tool for dynamically optimizing the network based

on specified passing constraints. Through the utilization of

augmenting paths, the algorithm systematically adjusted passing

strategies, fostering an enhanced flow of passes within the team.

The choice of representing the passing network as a directed

graph, with nodes representing players and edges denoting

passing connections with associated capacities, provided a clear

and versatile model for optimization.

The research outcomes not only showcase the flexibility of

the Ford-Fulkerson algorithm in adapting to specific football

team structures but also emphasize its potential to fine-tune

passing strategies in real-time scenarios. The algorithm's ability

to dynamically adjust to changes in player positions, roles, and

game situations highlights its applicability in dynamic and

Makalah IF2120 Matematika Diskrit – Sem. I Tahun 2023/2024

unpredictable football environments.

While the visual representation of the optimized passing

network adds a layer of interpretability, enabling coaches and

analysts to gain insights into strategic passing patterns, there are

areas for further exploration. Future research could delve into

refining the algorithm to account for additional factors such as

player fatigue, opposition strategies, and evolving match

dynamics.

In summary, this research contributes to the growing field of

applying discrete optimization techniques in sports analytics.

The Ford-Fulkerson algorithm emerges as a valuable tool for

football coaches and analysts seeking to maximize passing

efficiency, ultimately influencing team performance on the

field.

VI. ACKNOWLEDGMENT

The author would like to thank first of all, to God for all the

guidance throughout the process of learning thus writing the

contents of this paper. The author would also like to thank the

lecturer of ITB Discrete Mathematics IF2120 for my class, Dr.

Ir. Rinaldi Munir, M.T and Monterico Adrian, S.T, M.T and. for

sharing their knowledges and guide the students throughout the

learning process in the class. And also worth mentioning, the

author want to thank family members and friends for their

unbelievable support.

REFERENCES

[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009).

Introduction to Algorithms (3rd ed.). MIT Press.
[2] Munir, Rinaldi. (2020). “Graf: Bagian 1”.

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-

Graf-Bagian1-2023.pdf (accessed on 30th November 2023).
[3] Bondy, J. A., & Murty, U. S. R. (2008). Graph Theory. Springer.

[4] SoFIFA. (2023). “Football Players Rating”. https://sofifa.com/ (accessed

on 30th November 2023).
[5] Sumpter, D & Andrzejewski, A. (2022). “Case study: decentralized

football”.

https://soccermatics.readthedocs.io/en/latest/lesson1/passnetworksExamp
le.html (accessed on 30th November 2023).

PERSONAL STATEMENT

I hereby declare that the paper I wrote is my own writing, not an

adaptation, or translation of someone else's paper, and not

plagiarized.

Bandung, 30th November 2023

Owen Tobias Sinurat, 13522131

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian1-2023.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2023-2024/19-Graf-Bagian1-2023.pdf
https://sofifa.com/
https://soccermatics.readthedocs.io/en/latest/lesson1/passnetworksExample.html
https://soccermatics.readthedocs.io/en/latest/lesson1/passnetworksExample.html

